
MATH 344–Differential Geometry III: Riemannian

geometry

Name:

SCIPER No:

Instructions:

1. This examination contains 5 questions and 14 pages, including this page.

2. You have two hours and forty five minutes (2:45) to complete the examination.

3. Write your answers in the blank space between the questions (including on the back of
the corresponding pages). If you need additional space, you can use additional blank
papers (we will provide them to you), but make sure to write your name on those.

4. You may use one (1) one-sided A4 page with notes that you have prepared. You may
not use any other resources, including lecture notes, books, or other students.



1. Let (M, g) be a connected Riemannian manifold.

(i) Define the Riemannian distance distg(p, q) between two points p, q ∈ M.

(ii) Define when (M, g) is geodesically complete and when it is complete (as a metric
space).

(iii) State the Hopf–Rinow theorem.
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2. Let M and N be two smooth manifolds and F : M → N a smooth map.

(a) When is F called an immersion?

(b) Let g be a Riemannian metric on N . How is the pullback (0, 2) tensor F∗g defined
on M? Show that if F is an immersion, then F∗g is a Riemannian metric on M.

(c) Let h and g be Riemannian metrics on M and N , respectively. When is the map
F called an isometry between (M, h) and (N , g)?

(d) Let T2 = R
2/(2πZ)2 ≃ S

1 × S
1 be the standard 2-torus parametrized by (θ1, θ2) ∈

[0, 2π)× [0, 2π) and equipped with the flat metric

gT2 = (dθ1)2 + (dθ2)2.

Consider the map F : T2 → R
4 given by

F (θ1, θ2) =
(
cos(θ1), sin(θ1), cos(θ2), sin(θ2)

)
.

Show that, if gE is the standard Euclidean metric on R4, then F∗gE = gT2 .
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3. Let M be a smooth manifold.

(a) What is a connection ∇ on M?

(b) Show that if ∇ and ∇̄ are two connections on M, then the difference ∇− ∇̄ is an
(1, 2)-tensor field on M.

(c) Let g be a Riemannian metric on M. Define the Levi-Civita connection ∇ of
(M, g).

(d) Let ∇ be the Levi-Civita connection of (M, g). Show that if X, Y, Z are vector
fields on M, then the formula of Koszul is satisfied, i.e.

2⟨∇XY, Z⟩ = X⟨Y, Z⟩+Y ⟨X,Z⟩−Z⟨X, Y ⟩+⟨[X, Y ], Z⟩+⟨[Z,X], Y ⟩−⟨[Y, Z], X⟩.

(where ⟨·, ·⟩ denotes g(·, ·)).

(e) Show that the Levi-Civita connection ∇ of (M, g) is unique, i.e. any other connec-
tion ∇̄ satisfying the defining properties of ∇ has to coincide with ∇.

(f) Consider the metric
g = dx2 + f(x, y)dy2

for some smooth function f : R2 → (0,+∞) on M = R
2. Show that the curves

{y = const} are geodesics of (M, g).
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4. Let (M1, g1) and (M2, g2) be Riemannian manifolds and F : (M1, g1) → (M2, g2) be an
isometry. Recall that, in this case, F “commutes” with the covariant derivative, i.e. we
have

F ∗(∇(1)
X Y

)
= ∇(2)

F ∗X(F
∗Y ) for all X, Y ∈ Γ(M1),

where ∇(i) is the Levi-Civita connection of the metric gi, i = 1, 2.

(a) Show that if γ1 : (a, b) → M1 is a geodesic of (M1, g1), then γ2
.
= F ◦ γ1 is a

geodesic of (M2, g2).

(b) We will say that a vector field Z on a Riemannian manifold (M, g) is locally constant
if, for every p ∈ M and any X ∈ TpM, we have

∇XZ|p = 0.

Show that if Z is a locally constant vector field on M1, then F ∗Z is a locally
constant vector field on M2.

(c) Let R(i) denote the Riemann curvature tensor of (Mi, gi), i = 1, 2. Show that

F ∗(R(1)(X, Y )Z
)
= R(2)(F ∗X,F ∗Y )(F ∗Z) for all X, Y, Z ∈ Γ(M1).

Hint: If needed, you can use without proof the fact that F ∗([X, Y ]) = [F ∗X,F ∗Y ]
for any smooth map F and smooth vector fields X, Y .
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5. Let Mm be a smooth submanifold of (N n, g). Let ḡ be the first fundamental form of M.
Let us also denote with π⊥ and π⊤ the orthogonal projections onto (TpM)⊥, TpM ⊂
TpN , respectively, for any p ∈ M.

(a) Define the second fundamental form B(·, ·) ofM and show that B(X, Y ) = B(Y,X)
for all X, Y ∈ Γ(N ,M). In the case when M is of codimension 1, define the scalar
second fundamental form b(·, ·) of M with respect to a given unit normal n̂ to M.

(b) Recall Gauss’s equation relating the Riemann curvature tensor R of the ambient
space (N , g) to that of (M, ḡ): For all X, Y, Z,W ∈ Γ(N ,M),

g
(
R(X, Y )Z,W

)
−ḡ

(
R̄(X, Y )Z,W

)
= g

(
B(X,Z), B(Y,W )

)
− g

(
B(X,W ), B(Y, Z)

)
.

Show that if (N , g) = (Rn, gE) and M is of codimension 1 and admits a unit normal
n̂, then, for any p ∈ M and any 2-plane Π ⊂ TpM spanned by two non-collinear
tangent vectors X, Y , the sectional curvature K̄p(Π) of (M, ḡ) satisfies

K̄p(Π) =
b(X,X)b(Y, Y )−

(
b(X, Y )

)2
∥X∥2∥Y ∥2 − ⟨X, Y ⟩2

.

(c) Let (N , g) = (R3, gE) and dimM = 2. Show that if M ⊂ R
n contains a straight

line passing through p, then
K̄p(TpM) ≤ 0.

(d) Let (N , g) = (Rn+1, gE) and dimM = n ≥ 3. Show that, for every p ∈ M, there
exists a 2-plane Π ⊂ TpM such that

K̄p(Π) ≥ 0.

(as a result, codimension 1 hypersurfaces of Rn+1 for n ≥ 3 cannot have strictly
negative sectional curvature).
Hint: You can use the symmetry of b(·, ·) to deduce that the linear map L : TpM →
M defined by the relation

⟨Lv,w⟩ = b(v, w) for all v, w ∈ TpM

is self-adjoint and hence has a complete basis of orthonormal eigenvectors {ei}ni=1.
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